3.2.12 \(\int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\) [112]

3.2.12.1 Optimal result
3.2.12.2 Mathematica [A] (verified)
3.2.12.3 Rubi [A] (verified)
3.2.12.4 Maple [B] (verified)
3.2.12.5 Fricas [B] (verification not implemented)
3.2.12.6 Sympy [F]
3.2.12.7 Maxima [B] (verification not implemented)
3.2.12.8 Giac [B] (verification not implemented)
3.2.12.9 Mupad [F(-1)]

3.2.12.1 Optimal result

Integrand size = 31, antiderivative size = 127 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {2 A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}} \]

output
2*A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d-1/2*(A-B) 
*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)-1/4*(5*A-B)*arctanh(1/2*sin(d*x+c)*a^ 
(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)
 
3.2.12.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.03 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {(5 A-B) \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right )-4 \sqrt {2} A \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right )+(A-B) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{d (a (1+\cos (c+d x)))^{3/2} \left (-1+\sin ^2\left (\frac {1}{2} (c+d x)\right )\right )} \]

input
Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + a*Cos[c + d*x])^(3/2),x 
]
 
output
((5*A - B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^5 - 4*Sqrt[2]*A*ArcT 
anh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^5 + (A - B)*Cos[(c + d*x)/2 
]^3*Sin[(c + d*x)/2])/(d*(a*(1 + Cos[c + d*x]))^(3/2)*(-1 + Sin[(c + d*x)/ 
2]^2))
 
3.2.12.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 3457, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) (A+B \cos (c+d x))}{(a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\int \frac {(4 a A-a (A-B) \cos (c+d x)) \sec (c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(4 a A-a (A-B) \cos (c+d x)) \sec (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {4 a A-a (A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3464

\(\displaystyle \frac {4 A \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-a (5 A-B) \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a (5 A-B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {\frac {2 a (5 A-B) \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}+4 A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {4 A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {\sqrt {2} \sqrt {a} (5 A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {-\frac {8 a A \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {\sqrt {2} \sqrt {a} (5 A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {8 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {\sqrt {2} \sqrt {a} (5 A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

input
Int[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + a*Cos[c + d*x])^(3/2),x]
 
output
((8*Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d 
- (Sqrt[2]*Sqrt[a]*(5*A - B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[ 
a + a*Cos[c + d*x]])])/d)/(4*a^2) - ((A - B)*Sin[c + d*x])/(2*d*(a + a*Cos 
[c + d*x])^(3/2))
 

3.2.12.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.2.12.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(363\) vs. \(2(106)=212\).

Time = 5.19 (sec) , antiderivative size = 364, normalized size of antiderivative = 2.87

method result size
default \(\frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 A \sqrt {2}\, \ln \left (-\frac {2 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5 A \ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+B \ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -A \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+B \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right ) \sqrt {2}}{4 a^{\frac {5}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(364\)
parts \(-\frac {A \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (5 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -4 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{4 a^{\frac {5}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {B \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +\sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\right ) \sqrt {2}}{4 a^{\frac {5}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(424\)

input
int((A+B*cos(d*x+c))*sec(d*x+c)/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVER 
BOSE)
 
output
1/4/a^(5/2)/cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*2^(1/2) 
*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2) 
*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a*cos(1/2*d*x+1/2*c)^2+2*A*2 
^(1/2)*ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)- 
2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a*cos(1/2*d*x+1/2*c)^ 
2-5*A*ln(2*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)/cos(1/2*d*x+1/2*c))* 
a*cos(1/2*d*x+1/2*c)^2+B*ln(2*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)/c 
os(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^2*a-A*(a*sin(1/2*d*x+1/2*c)^2)^(1/2) 
*a^(1/2)+B*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/sin(1/2*d*x+1/2*c)*2^(1 
/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 
3.2.12.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (106) = 212\).

Time = 0.34 (sec) , antiderivative size = 281, normalized size of antiderivative = 2.21 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left ({\left (5 \, A - B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A - B\right )} \cos \left (d x + c\right ) + 5 \, A - B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (A - B\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(3/2),x, algorithm= 
"fricas")
 
output
-1/8*(sqrt(2)*((5*A - B)*cos(d*x + c)^2 + 2*(5*A - B)*cos(d*x + c) + 5*A - 
 B)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sq 
rt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + 
 c) + 1)) - 4*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(a)*log((a*cos 
(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos 
(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4* 
sqrt(a*cos(d*x + c) + a)*(A - B)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a 
^2*d*cos(d*x + c) + a^2*d)
 
3.2.12.6 Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))**(3/2),x)
 
output
Integral((A + B*cos(c + d*x))*sec(c + d*x)/(a*(cos(c + d*x) + 1))**(3/2), 
x)
 
3.2.12.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 15722 vs. \(2 (106) = 212\).

Time = 0.84 (sec) , antiderivative size = 15722, normalized size of antiderivative = 123.80 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(3/2),x, algorithm= 
"maxima")
 
output
1/4*(32*(cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) + cos(2*d*x + 2*c)*sin(3/2* 
d*x + 3/2*c) + cos(d*x + c)*sin(3/2*d*x + 3/2*c) + cos(3/2*d*x + 3/2*c)*si 
n(d*x + c))*cos(3*d*x + 3*c)^2 + 96*(cos(3/2*d*x + 3/2*c)*sin(3*d*x + 3*c) 
 + 3*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - (3*cos(d*x + c) + 1)*sin(3/2* 
d*x + 3/2*c) - cos(3*d*x + 3*c)*sin(3/2*d*x + 3/2*c) - 3*cos(2*d*x + 2*c)* 
sin(3/2*d*x + 3/2*c) + 3*cos(3/2*d*x + 3/2*c)*sin(d*x + c))*cos(4/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 96*(cos(3/2*d*x + 3/2*c 
)*sin(3*d*x + 3*c) + 3*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - (3*cos(d*x 
+ c) + 1)*sin(3/2*d*x + 3/2*c) - cos(3*d*x + 3*c)*sin(3/2*d*x + 3/2*c) - 3 
*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) + 3*cos(3/2*d*x + 3/2*c)*sin(d*x + 
c))*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 32*(c 
os(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) + cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2* 
c) + cos(d*x + c)*sin(3/2*d*x + 3/2*c) + cos(3/2*d*x + 3/2*c)*sin(d*x + c) 
)*sin(3*d*x + 3*c)^2 + 32*(6*cos(d*x + c) + 1)*cos(2*d*x + 2*c)*sin(3/2*d* 
x + 3/2*c) + 96*cos(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 96*sin(2*d*x + 2 
*c)^2*sin(3/2*d*x + 3/2*c) + 96*(cos(3/2*d*x + 3/2*c)*sin(3*d*x + 3*c) + 3 
*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - (3*cos(d*x + c) + 1)*sin(3/2*d*x 
+ 3/2*c) - cos(3*d*x + 3*c)*sin(3/2*d*x + 3/2*c) - 3*cos(2*d*x + 2*c)*sin( 
3/2*d*x + 3/2*c) + 3*cos(3/2*d*x + 3/2*c)*sin(d*x + c))*sin(4/3*arctan2(si 
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 96*(cos(3/2*d*x + 3/2*c)...
 
3.2.12.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 220 vs. \(2 (106) = 212\).

Time = 0.86 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.73 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {\frac {8 \, A \log \left (\frac {{\left | -2 \, \sqrt {2} - 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} - 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2} {\left (5 \, A \sqrt {a} - B \sqrt {a}\right )} \log \left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {\sqrt {2} {\left (5 \, A \sqrt {a} - B \sqrt {a}\right )} \log \left (-\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {2 \, \sqrt {2} {\left (A \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{8 \, d} \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(3/2),x, algorithm= 
"giac")
 
output
1/8*(8*A*log(abs(-2*sqrt(2) - 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) - 4*si 
n(1/2*d*x + 1/2*c)))/(a^(3/2)*sgn(cos(1/2*d*x + 1/2*c))) - sqrt(2)*(5*A*sq 
rt(a) - B*sqrt(a))*log(sin(1/2*d*x + 1/2*c) + 1)/(a^2*sgn(cos(1/2*d*x + 1/ 
2*c))) + sqrt(2)*(5*A*sqrt(a) - B*sqrt(a))*log(-sin(1/2*d*x + 1/2*c) + 1)/ 
(a^2*sgn(cos(1/2*d*x + 1/2*c))) + 2*sqrt(2)*(A*sqrt(a)*sin(1/2*d*x + 1/2*c 
) - B*sqrt(a)*sin(1/2*d*x + 1/2*c))/((sin(1/2*d*x + 1/2*c)^2 - 1)*a^2*sgn( 
cos(1/2*d*x + 1/2*c))))/d
 
3.2.12.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\cos \left (c+d\,x\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + a*cos(c + d*x))^(3/2)),x)
 
output
int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + a*cos(c + d*x))^(3/2)), x)